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Global Address Space 
and Remote Memory Access
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(0xf32674,P5)
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collection of address spaces
of processes in a parallel job
global address: (address, PID)

Examples: Cray T3E, Fujitsu VPP5000

Point-to-point Message Passing

P1P0
receive send

rather than
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put

Remote Memory Access

associated communication paradigm



GAS Models in PModels Project
www.pmodels.org

• Global Address Space is a concept shared among 
several models in the PModels project
• Language Based Programming Models

• Co-Array Fortran (Rice, U. Minnesota)
• UPC (LBNL, Berkeley)
• Titanium (Berkeley)

• Library Based Programming Models
• MPI-2 1-sided (Argonne)
• SHMEM (Ames Lab)
• Global Arrays (PNNL)



CoArray Fortran

• Relatively simple extensions (comparing to HPF) to Fortran 90
• SPMD process images

• number of images fixed during execution
• images operate asynchronously

• Both private and shared data
• allows programmer manage data locality explicitly
real a(20,20) private: a 20x20 array in each image
real a(20,20) [*] shared: a 20x20 array in each image

• Simple one-sided shared memory communication
x(:,j:j+2) = a(r,:) [p:p+2] copy 3 rows from p:p+2 into 3 ocal columns

• Flexible synchronization 
sync_team(team [,wait])

• team a vector of process ids to synchronize with
• wait a vector of processes to wait for (a subset of team)

• Pointers and (possibly asymmetric) dynamic allocation
• Parallel I/O (Panda/HDF efforts at UIUC & NCSA)



UPC
• Shared array elements are spread across the threads

shared int x[THREADS] one element per thread
shared int y[3][THREADS]   3 elements per thread
shared int z[3*THREADS] 3 elements per thread, cyclic
Assume THREADS=4, elements with affinity to processor 0 are marked

x

y                                                               blocked

z                                                               cyclic

This is really 
a 2D array

• Pointers may point to shared or private variables
shared int *sp;  pointer to an integer residing in the shared memory

• Locks

• Strict and relaxed memory consistency models



SHMEM

• Introduced on the Cray T3D
• put, get, atomic swap, collectives

• Memory addressability
• symmetric objects
• stack, heap allocation on the T3D
• Cray memory allocation routine shmalloc

• Characteristics
• ordered in the original version on the T3D

• out-of-order on the T3E due to adaptive routing

• simple progress rules
• simpler than MPI-2 1-sided, less synchronization

• Portable implementation from Ames - GPSHMEM

P1P0

shmem_put(a,b,n,0)

Symmetric Object

a
a b



Global Arrays

• shared memory model in 
context of distributed arrays

• dual view of data
• shared
• distributed

• data locality control 
• used in multiple areas

• popular in parallel computational 
chemistry codes

single, shared data structure/ global indexing
e.g., A(4,3) rather than buf(7) on task 2

physically distributed data



Global Array Model of Computations
(motivated by NUMA hardware)
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PModels Run-Time System Activities 

• Communication support critical
• Need performance, scalability, and portability
• Low latency RMA communication 

• e.g., put,get, locks, atomic read-modify-write
• nonblocking API for overlapping communication with data movement

for latency hiding
• both small message and bulk operations important

• Collective operations
• barriers, reduce, broadcast

• Run-time efforts represented by
• GASNet (LBNL)
• ARMCI (PNNL, OSU)



GASnet

• LBNL system for UPC 
• Aims for a wide portability
• 2-Level architecture to ease implementation
• Core API

– Based heavily on Active Messages 
– Implemented directly on each platform 
– Most basic required primitives, as narrow and general as possible

• Extended API
– Wider interface that includes more complicated operations
– Reference implementation of extended API in terms of the core API
– Implementors can choose to directly implement any subset for 

performance - leverage hardware support for higher-level operations

Compiler-generated code

Compiler-specific runtime system

GASNet Extended API

GASNet Core API

Network Hardware



ARMCI
Aggregate Remote Memory Copy Interface

§ Portable and low-level API used by
§ GPSHMEM, CoArray Fortran, Global Arrays

§ Broad set of functionality
§ put, get, accumulate (also with noncontiguous interfaces)

§ atomic read-modify-write, mutexes and locks

§ collective operations

§ Characteristics
§ simple progress rules,  operations ordered w.r.t. target (ease of use)

§ does not assume any particular implementation model (e.g., AM)

§ focus on block data rather than single word transfers

§ High performance delivered on a wide range of platforms 

§ Multi-protocol and multi-method implementations

(0xf5670,P0)

(0xf32674,P5)

P0 P1 P2

direct remote memory access



Integrated Run-Time System

• Goal to build run-time system used accross PModels project
• generality and flexibility
• portability and performance

• Combine best features of ARMCI and GasNet, for example 
• AM-MPI developed by GasNet should work with ARMCI thus 

providing the Active Message API (polling only)
• define extended set of  memcopy interfaces in UPC able to use 

highly tuned ARMCI strided and vector interfaces
• add nonblocking APIs defined by GasNet to ARMCI



Portability Challenge
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Achieving Portability

native vendor protocols OS

functionality
matches vendor
APIs

missing

client-server, AMs



Client-Server Approach

• Used to implement missing functionality
• conversion of memory requirements

• e.g. dynamic memory registration

• get on top of put

• Architecture
• Extra thread on each SMP node used as server
• Blocked when no requests available

• Polling available as a configuration option if 
extra CPU power available

• Interrupt/demand driven operation
• usually adds extra cost

• AM handler like approach but no full AM API

user process 
(client)

extra thread  
(server)

ne
tw

or
k



Scalability and Performance of RMA

• In principle RMA model is highly scalable 
• given good h/w support e.g., Cray T3E
• otherwise might be limited by a s/w implementation

• conversion of  h/w, OS, and programming model requirements  

• Depend on the underlying network capabilities
• reliability (user or h/w/firmware?)
• APIs and protocols - native RMA or other paradigm?
• memory access requirements

• registering might be required

• flow control & buffer managment (e.g., VIA vs GM)

• We want the network h/w handle as much as possible
• Design of complex NIC can be costly!
• Traditionally IBM SP designs did not favor low latency RMA

P

P

O(P) buffers under GM 

O(P2) buffers under VIA



Relation To Blue Gene/L
• Interested in porting GAS models to the machine
• Advantages of GAS Models 

• complementary approach to MPI
• no embedded synchronization
• better suited for irregular applications and data access patterns
• scalable implementation could be simpler

– no message queues management, matching sends with receives
– movement of data between two memory locations

• shared memory style access to data 

• Challenges
• dealing with h/w faults - none of  the GAS models supports it
• underlying network protocols should be RMA aware for best 

performance
• building RMA on top of message passing compromises performance



Final Thoughts

• GAS Models could offer an alternative to MPI on BG/L
• we don't know which model would work best

• implementation might be a limiting factor

• good run-time support critical for performance and scalability
• opportunities for using second processor

• Need to engage the IBM team to derive an efficient implementation of 
the PModels run time
• network protocols and OS issues
• performance characteristics and resource utilization

• Some research problems are difficult and span multiple s/w layers e.g., 
fault tolerance
• programming model vs application vs OS support
• as a minimum run-time system must recognize faults and provide data up to 

programming model 


